3-2.Motion in Plane
medium

किसी लंबे हाल की छत $25\, m$ ऊंची है । वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें $40\, m s ^{-1}$ की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए ?

Option A
Option B
Option C
Option D

Solution

Speed of the ball, $u=40\, m / s$ Maximum height, $h=25 \,m$

In projectile motion, the maximum height reached by a body projected at an angle $\theta,$ is given by the relation:

$h=\frac{u^{2} \sin ^{2} \theta}{2 g}$

$25=\frac{(40)^{2} \sin ^{2} \theta}{2 \times 9.8}$

$\sin ^{2} \theta=0.30625$

$\sin \theta=0.5534: . \theta=\sin ^{-1}(0.5534)=33.60^{\circ}$

Horizontal Range $R=\frac{u^{2} \sin 2 \theta}{g}$

$=\frac{(40)^{2} \times \sin 2 \times 33.60}{9.8}$

$=\frac{1600 \times \sin 67.2}{9.8}$

$=\frac{1600 \times 0.922}{9.8}=150.53\, m$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.