उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है
$(3, 2)$
$(1, 2)$
$(2, 3)$
$(0, 2)$
बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे
वृत्त ${(x + a)^2} + {(y + b)^2} = {a^2}$ व ${(x + \alpha )^2} + {(y + \beta )^2} = {\beta ^2}$ एक-दूसरे को लम्बवत् प्रतिच्छेद करेंगे यदि
वृत्तों ${x^2} + {y^2} - 3x - 4y + 5 = 0$ तथा $2{x^2} + 2{y^2} - 10x$ $ - 12y + 12 = 0$ के मूलाक्ष का समीकरण है
वृत्तों $x ^{2}+ y ^{2}-6 x =0$ तथा $x ^{2}+ y ^{2}-4 y =0$, के प्रतिच्छेदन बिन्दुओं से हो कर जाने वाले वह वृत्त जिसका केन्द्र, रेखा $2 x -3 y +12=0$ पर स्थित है, निम्न में से जिस बिंदु से भी हो कर जाता है, वह है
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो