दो वृत्त ${x^2} + {y^2} - 2x - 3 = 0$ व ${x^2} + {y^2} - 4x - 6y - 8 = 0$ इस प्रकार हैं कि

  • A

    वे एक-दूसरे को स्पर्श करते हैं

  • B

    वे एक-दूसरे को प्रतिच्छेदित करते हैं

  • C

    एक-दूसरे के अन्दर हैं

  • D

    इनमें से कोई नहीं

Similar Questions

यदि दो वृत्त $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ तथा ${x^2} + {y^2} - 4x + 10y + 16 = 0$ एक दूसरे को लम्बवत् काटते हैं, तब $k$ का मान है

यदि वृत्त $x^2+y^2-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ के व्यासों में से एक व्यास, वृत्त $( x -2 \sqrt{2})^2+( y -2 \sqrt{2})^2= r ^2$ की जीवा है, तो $r^2$ का मान है

  • [JEE MAIN 2022]

बिन्दु $(2, 3)$ एक समाक्ष वृत्त निकाय का एक सीमान्त बिन्दु है जिसका वृत्त ${x^2} + {y^2} = 9$ एक सदस्य है। दूसरे सीमान्त बिन्दु के निर्देशांक होंगे

यदि परवलय $y^{2}=4 x$ की नाभिलम्ब जीवा, दो वृत्तों, $C_{1}$ तथा $C _{2}$ की उभयनिष्ठ जीवा है, जबकि वृत्तों में से प्रत्येक का अर्धव्यास $2 \sqrt{5}$ है, तो वृत्तों $C _{1}$ एवं $C _{2}$ के केन्द्र बिन्दुओं के बीच की दूरी है 

  • [JEE MAIN 2020]

वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ तथा $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दु से होकर जाने वाले वृत्त का समीकरण, जिसका केन्द्र $13x + 30y = 0$ पर स्थित है, होगा