The circle passing through point of intersection of the circle $S = 0$ and the line $P = 0$ is
$S + \lambda P = 0$
$S - \lambda P = 0$
$\lambda S + P = 0$
All of these
If a circle passes through the point $(1, 2)$ and cuts the circle ${x^2} + {y^2} = 4$ orthogonally, then the equation of the locus of its centre is
The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$
The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is
The equation of the circle which passing through the point $(2a,\,0)$ and whose radical axis is $x = \frac{a}{2}$ with respect to the circle ${x^2} + {y^2} = {a^2},$ will be
Let $r_{1}$ and $r_{2}$ be the radii of the largest and smallest circles, respectively, which pass through the point $(-4,1)$ and having their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4= 0.$ If $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$, then $a+b$ is equal to: