The equation of a circle passing through points of intersection of the circles ${x^2} + {y^2} + 13x - 3y = 0$ and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and point $(1, 1)$ is
$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$
$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$
$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$
None of these
Let the centre of a circle, passing through the point $(0,0),(1,0)$ and touching the circle $x^2+y^2=9$, be $(h, k)$. Then for all possible values of the coordinates of the centre $(h, k), 4\left(h^2+k^2\right)$ is equal to .............
If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then
The minimum distance between any two points $P _{1}$ and $P _{2}$ while considering point $P _{1}$ on one circle and point $P _{2}$ on the other circle for the given circles' equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is .........
Coordinates of the centre of the circle which bisects the circumferences of the circles
$x^2 + y^2 = 1 ; x^2 + y^2 + 2x - 3 = 0$ and $x^2 + y^2 + 2y - 3 = 0$ is
If the circles $(x+1)^2+(y+2)^2=r^2$ and $x^2+y^2-4 x-4 y+4=0$ intersect at exactly two distinct points, then