दीर्घवृत्त $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ की नाभियों के निर्देशांक हैं
$(1, 2), (3, 4)$
$(1, 4), (3, 1)$
$(1, 1), (3, 1)$
$(2, 3), (5, 4)$
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
एक दीर्घवृत्त, जिसका केन्द्र मूल बिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि उसकी एक नियता $x=-4$ है, तो उसके बिंदु $\left(1, \frac{3}{2}\right)$ पर उसके अभिलंब का समीकरण है:
दीर्घवृत्त ${e_1}$ के किसी बिन्दु पर स्पर्श रेखा तथा अक्षों से निर्मित त्रिभुज का न्यूनतम क्षेत्रफल है
दीर्घवृत्त $9{x^2} + 16{y^2} = 180$ पर स्थित बिन्दु $(2, 3)$ पर खींचे गये अभिलम्ब का समीकरण है
माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$