The co-ordinates of the point from where the tangents are drawn to the circles ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ and ${x^2} + {y^2} + 10y + 24 = 0$ are of same length, are
$\left( {2,\frac{5}{2}} \right)$
$\left( { - 2, - \frac{5}{2}} \right)$
$\left( { - 2,\frac{5}{2}} \right)$
$\left( {2, - \frac{5}{2}} \right)$
Two tangents are drawn from a point $P$ to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by $C$ and these tangents touch the circle at points $A$ and $B$, then the ratio of the areas of $\Delta PAB$ and $\Delta CAB$ is :
Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to
The angle at which the circles $(x - 1)^2 + y^2 = 10$ and $x^2 + (y - 2)^2 = 5$ intersect is
The equation of pair of tangents to the circle ${x^2} + {y^2} - 2x + 4y + 3 = 0$ from $(6, - 5)$, is
Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$