The coefficient of $x^{7}$ in the expression $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ is
$120$
$330$
$210$
$420$
If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to
The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is
The term independent of $x$ in the expansion of ${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ will be
The first $3$ terms in the expansion of ${(1 + ax)^n}$ $(n \ne 0)$ are $1, 6x$ and $16x^2$. Then the value of $a$ and $n$ are respectively
${16^{th}}$ term in the expansion of ${(\sqrt x - \sqrt y )^{17}}$ is