व्यंजक $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ में $x ^{7}$ का गुणांक है :
$120$
$330$
$210$
$420$
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y x\right)^{12}, x \neq 0$
$\left(\frac{ x +1}{ x ^{2 / 3}- x ^{1 / 3}+1}-\frac{ x -1}{ x - x ^{1 / 2}}\right)^{10}, x \neq 0,1$ के प्रसार में ' $x$ ' से स्वतंत्र पद बराबर है
यदि $A$ और $B$, ${(1 + x)^{2n}}$तथा ${(1 + x)^{2n - 1}}$ के विस्तारों में ${x^n}$ के गुणांक हैं, तब
माना $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x > 0$ के प्रसार में $x ^{-1}$ तथा $x ^{-3}$ के गुणांक क्रमश: $m$ तथा $n$ है। यदि धनात्मक पूर्णांक $r$ इस प्रकार है कि $m n^2={ }^{15} C _{ r } .2^{ r }$ है, तो $r$ का मान है।
यदि ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ के प्रसार में $(r + 1)$ वें पद में $a$ तथा $b$ की समान घातें हैं, तब $r$ का मान है