- Home
- Standard 11
- Mathematics
7.Binomial Theorem
easy
The coefficient of ${x^{32}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is
A
$^{15}{C_5}$
B
$^{15}{C_6}$
C
$^{15}{C_4}$
D
$^{15}{C_7}$
Solution
(c) Let ${T_{r + 1}}$ term containing $x^{32}$
$\therefore ^{15}{C_r}{x^{4r}}{\left( {\frac{{ – 1}}{{{x^3}}}} \right)^{15 – r}}$
==> ${x^{4r}}{x^{ – 45 + 3r}} = {x^{32}}$
$\Rightarrow 7r = 77 $
$\Rightarrow r = 11$.
Hence coefficient of $x^{32}$ is $^{15}{C_{11}}$ or $^{15}{C_4}$
Standard 11
Mathematics