${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के प्रसार में ${x^{32}}$ का गुणांक होगा

  • A

    $^{15}{C_5}$

  • B

    $^{15}{C_6}$

  • C

    $^{15}{C_4}$

  • D

    $^{15}{C_7}$

Similar Questions

$\sqrt 3 \,{\left( {1 + \frac{1}{{\sqrt 3 }}} \right)^{20}}$ के विस्तार में महत्तम पद है

${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $x$ से स्वतंत्र पद है  

माना कि $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$, और $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$ हैं। तब निम्नलिखित कथनों में से कौन सा (से) सत्य है (हैं)?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, जहां $\phi$ रिक्त समुच्चय (empty set) को दर्शाता है।

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ किन्हीं दिये गए $a, b \in Z$ के लिए, $\cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ यदि और केवल यदि (if and only if) $b=0$, जहां $i=\sqrt{-1}$ है।

  • [IIT 2024]

$\left(\frac{ x +1}{ x ^{2 / 3}- x ^{1 / 3}+1}-\frac{ x -1}{ x - x ^{1 / 2}}\right)^{10}, x \neq 0,1$ के प्रसार में ' $x$ ' से स्वतंत्र पद बराबर है

  • [JEE MAIN 2021]

$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है 

  • [JEE MAIN 2019]