7.Binomial Theorem
hard

The coefficient of $\frac{1}{x}$ in the expansion of ${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is

A

$\frac{{n!}}{{(n - 1)!(n + 1)!}}$

B

$\frac{{(2n)\,!}}{{(n - 1)!(n + 1)!}}$

C

$\frac{{n!}}{{(n - 1)!(n + 1)!}}$

D

None of these

Solution

(b) ${(1 + x)^n} = {\,^n}{C_0} + {\,^n}{C_1}x + {\,^n}{C_2}{x^2} + …. + {\,^n}{C_n}{x^n}$

${\left( {1 + \frac{1}{x}} \right)^n} = {\,^n}{C_0} + {\,^n}{C_1}\frac{1}{x} + {\,^n}{C_2}\frac{1}{{{x^2}}} + …. + {\,^n}{C_n}{\left( {\frac{1}{x}} \right)^n}$

Obviously, required coefficient of $\frac{1}{x}$ can be given by

$^n{C_0}{\,^n}{C_1} + {\,^n}{C_1}{\,^n}{C_2} + …. + {\,^n}{C_{n – 1}}^n{C_n}$

$ = \frac{{(2n)!}}{{(n – 1)!(n + 1)!}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.