${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $\frac{1}{x}$ का गुणांक है
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
$\frac{{(2n)\,!}}{{(n - 1)!(n + 1)!}}$
$\frac{{n!}}{{(n - 1)!(n + 1)!}}$
इनमें से कोई नहीं
यदि $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$ के द्विपद प्रसार में अंत से $1011$ वाँ पद, आरंभ से $1011$ वें पद का $1024$ गुना है, तो $|\mathrm{x}|$ बराबर है -
यदि धन पूर्णाकों $m$ तथा $n$ के लिए
$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।
यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$
यदि ${(1 + x)^{14}}$ के विस्तार में ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ के गुणांक समांतर श्रेणी में हों, तो $r = $