- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ ના વિસ્તરણમાં ${t^{24}}$ નો સહગુણક મેળવો.
A
$^{12}{C_6} + 2$
B
$^{12}{C_5}$
C
$^{12}{C_6}$
D
$^{12}{C_7}$
(IIT-2003)
Solution
(a) ${(1 + {t^2})^{12}}(1 + {t^{12}})(1 + {t^{24}})$ = $(1 + {}^{12}{C_1}{t^2} + {}^{12}{C_2}{t^4} + …{ + ^{12}}{C_4}{t^8} + …{ + ^{12}}{C_{10}}{t^{20}} + ….)$
$(1 + {t^{12}} + {t^{24}} + {t^{36}})$
$\therefore$ Coefficient of ${t^{24}}{ = ^{12}}{C_6} + 2.$
Standard 11
Mathematics