જો ધન પ્રાકૃતિક સંખ્યા $r > 1,n > 2$ માટે ${(1 + x)^{2n}}$ ના દ્રીપદી વિતરણમાં $x$ ની ઘાતાંક $(3r)^{th}$ અને ${(r + 2)^{th}}$ ના સહગુણક સમાન હોય તો . . . .
$n = 2r$
$n = 3r$
$n = 2r + 1$
એકપણ નહીં
જો ${(1 + x)^n}$ ના વિસ્તરણમાં ${p^{th}}$, ${(p + 1)^{th}}$ અને ${(p + 2)^{th}}$ પદો સમાંતર શ્રેણીમાં હોય તો . . . .
જો ${(1 + x)^m}{(1 - x)^n}$ ના વિસ્તરણમાં $x$ અને ${x^2}$ ના સહગુણક અનુક્રમે $3$ અને $-6$ હોયતો $m$ મેળવો.
જો $(1 + x)^{18}$ ના વિસ્તરણમાં $(2r + 4)th$ પદનો શુન્યેતર સહગુણક એ $(r - 2)th$ પદના શુન્યેતર સહગુણક કરતાં વધારે હોય તો $r$ ની શક્ય એવી કેટલી પૂર્ણાક કિમતો મળે?
જો દ્રીપદી $(2^{1/3} + 3^{-1/3})^n$ ના વિસ્તરણમાં શરૂવાતથી અને છેલ્લેથી છઠ્ઠા પદોનો ગુણોત્તર $1/6$ હોય તો $n$ ની કિમત મેળવો
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં અચળપદ મેળવો.