7.Binomial Theorem
medium

ધારો કે $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0$ નાં વિસ્તરણમાં $x^{-1}$ અને $x^{-3}$ નાં સહગુણકો અનુક્રમે $m$ અને $n$ છ. જો $r$ એવી ધનપૂણાક સંખ્યા હોય કે જેથી $m n^{2}={ }^{15} C_{r} \cdot 2^{r}$, તો $r$ ની કિંમત $\dots\dots\dots$ છે.

A

$3$

B

$4$

C

$5$

D

$6$

(JEE MAIN-2022)

Solution

$T _{ r +1}=(-1)^{ r } \cdot{ }^{15} C _{ r } \cdot 2^{15- r } X^{ \frac{15-2 r }{5}}$

$m ={ }^{15} C _{10} 2^{5}$

$n =-1$

$\text { so } mn ^{2}={ }^{15} C _{5} 2^{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.