10-1.Thermometry, Thermal Expansion and Calorimetry
medium

The coefficient of apparent expansion of mercury in a glass vessel is $153 \times 10^{-6} /{ }^{\circ} C$ and in steel vessel is $144 \times 10^{-6} /{ }^{\circ} C$. If $\alpha$ for steel is $12 \times 10^{-6} /{ }^{\circ} C ,$ then that of glass is

A

$9 \times 10^{-6} /{ }^{\circ} C$

B

$6 \times 10^{-6} /{ }^{\circ} C$

C

$36 \times 10^{-6} /{ }^{\circ} C$

D

$27 \times 10^{-6} /{ }^{\circ} C$

(AIIMS-2019)

Solution

The real expansion is given as the sum of apparent expansion and the vessel expansion.

$\gamma_{\text {real}}=\gamma_{\text {app}}+\gamma_{\text {vessel}}$

$\therefore\left(\gamma_{\text {app}}+\gamma_{\text {vessel}}\right)_{\text {glass }}=\left(\gamma_{\text {app}}+\gamma_{\text {vessel}}\right)_{\text {stee }}$

$153 \times 10^{-6}+\left(\gamma_{\text {vessel}}\right)_{\text {glass }}=144 \times 10^{-6}+\left(\gamma_{\text {vessel}}\right)_{\text {steel }}$

$\left(\gamma_{\text {vessel}}\right)_{\text {steel }}=3 \alpha=3 \times 12 \times 10^{-6}=36 \times 10^{-6} /{ }^{\circ} C$

The expansion of glass comes out be,

$153 \times 10^{-6}+\left(\gamma_{\text {vessel}}\right)_{\text {glass }}=144 \times 10^{-6}+36 \times 10^{-6}$

$\left(\gamma_{\text {vessel}}\right)_{\text {glass }}=3 \alpha=27 \times 10^{-6} /{ }^{\circ} C$

$\alpha=9 \times 10^{-6} /{ }^{\circ} C$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.