The minimum distance between any two points $P _{1}$ and $P _{2}$ while considering point $P _{1}$ on one circle and point $P _{2}$ on the other circle for the given circles' equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is .........
$4$
$3$
$2$
$1$
The lengths of tangents from a fixed point to three circles of coaxial system are ${t_1},{t_2},{t_3}$ and if $P, Q$ and $R$ be the centres, then $QRt_1^2 + RPt_2^2 + PQt_3^2$ is equal to
The coordinates of the radical centre of the three circles ${x^2} + {y^2} - 4x - 2y + 6 = 0,{x^2} + {y^2} - 4x - 2y + 6 = 0,$${x^2} + {y^2} - 12x + 2y + 30 = 0$ are
If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to
The point of contact of the given circles ${x^2} + {y^2} - 6x - 6y + 10 = 0$ and ${x^2} + {y^2} = 2$, is
Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if