वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा

  • A

    $3p = 2q$

  • B

    $3p + 2q = 0$

  • C

    ${p^3} = {q^2}$

  • D

    $27{p^3} = 4{q^2}$

Similar Questions

यदि $x$ वास्तविक है तो $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ का मान निम्न के बीच में नहीं होगा

यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे

$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी

  • [JEE MAIN 2019]

यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |

  • [JEE MAIN 2021]

यदि समीकरण $4{x^3} + 16{x^2} - 9x - 36 = 0$ के दो मूलों का योग शून्य हो तो मूल होंगे