वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा
$3p = 2q$
$3p + 2q = 0$
${p^3} = {q^2}$
$27{p^3} = 4{q^2}$
यदि समीकरण $e^{2 x}-11 e^x-45 e^{-x}+\frac{81}{2}=0$ के सभी मूलों का योग $\log _e P$ है तो $p$ बराबर होगा।
यदि $2 + i$ समीकरण ${x^3} - 5{x^2} + 9x - 5 = 0$ का एक मूल हो तो अन्य मूल होंगे
दो बहुपद $p(x), q(x)$ इस प्रकार हैं: $p(x)=x^2-5 x+a$ और $q(x)=x^2-3 x+b$ जहां $a, b$ प्राकृत संख्याएँ हैं । मान लें कि $\operatorname{hcf}(p(x), q(x))=x-1$ और $k(x)=\operatorname{lcm}(p(x), q(x))$ है। यदि बहुपद $k(x)$ के अधिकतम घात के गुणांक का मान 1 है, तो बहुपद $(x-1)+k(x)$ के शून्यकों का योग होगा:
$|x - 2{|^2} + |x - 2| - 6 = 0$के मूल होंगे
ऐसे कितने पूर्णांक $n$ हैं जिनके लिए समीकरण $3 x^3-25 x+n=0$ के तीन वास्तविक शून्यक हैं