माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.
$9$
$8$
$7$
$6$
किसी खेत में पशुओं की जनसंख्या इस प्रकार परिवर्तित होती है: वर्ष $n+2$ तथा वर्ष $n$ की जनसंख्याओं के बीच का अंतर वर्ष $n+1$ की जनसंख्या समानुपातिक है। यहाँ $n$ एक प्राकृत संख्या है। यदि वर्ष $2010,2011$ और $2013$ में पशुओं की जनसंख्या क्रमानुसार $39,60$ और $123$ हो तो वर्ष $2012$ में जनसंख्या का मान होगा:
समीकरण $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ का एक मूल होगा
बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है:
यदि $x$ वास्तविक है, तो फलन $\frac{{(x - a)(x - b)}}{{(x - c)}}$ का प्रत्येक मान वास्तविक होगा, यदि
माना द्विघात समीकरण $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है