समीकरण ${x^5} - 6{x^2} - 4x + 5 = 0$ के अधिकतम वास्तविक हलों की संख्या होगी
$0$
$3$
$4$
$5$
समीकरण $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}:$
यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा
समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
$\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ के हलों की संख्या है