यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?
$152$
$153$
$154$
$155$
मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
समीकरण ${x^5} - 6{x^2} - 4x + 5 = 0$ के अधिकतम वास्तविक हलों की संख्या होगी
समीकरण $x^{2}+|2 x-3|-4=0$, के मूलों का योगफल है
मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :
समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :