The condition that the straight line $lx + my = n$ may be a normal to the hyperbola ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is given by
$\frac{{{a^2}}}{{{l^2}}} - \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$
$\frac{{{l^2}}}{{{a^2}}} - \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
$\frac{{{l^2}}}{{{a^2}}} + \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
Find the equation of the hyperbola satisfying the give conditions: Vertices $(\pm 2,\,0),$ foci $(\pm 3,\,0)$
If the tangent on the point $(2\sec \phi ,\;3\tan \phi )$ of the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ is parallel to $3x - y + 4 = 0$, then the value of $\phi$ is ............ $^o$
Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to
A square $ABCD$ has all its vertices on the curve $x ^{2} y ^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $ABCD$ is
Curve $xy = {c^2}$ is said to be