Gujarati
10-2. Parabola, Ellipse, Hyperbola
medium

The condition that the straight line $lx + my = n$ may be a normal to the hyperbola ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is given by

A

$\frac{{{a^2}}}{{{l^2}}} - \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$

B

$\frac{{{l^2}}}{{{a^2}}} - \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$

C

$\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$

D

$\frac{{{l^2}}}{{{a^2}}} + \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$

Solution

(a) Any normal to the hyperbola is

$\frac{{ax}}{{\sec \theta }} + \frac{{by}}{{\tan \theta }} = {a^2} + {b^2}$ …..$(i)$

But it is given by $lx + my – n = 0$…..$(ii)$

Comparing $(i)$ and $(ii),$ we get

$\sec \theta = \frac{a}{l}\left( {\frac{{ – n}}{{{a^2} + {b^2}}}} \right)$

and $\tan \theta = \frac{b}{m}\left( {\frac{{ – n}}{{{a^2} + {b^2}}}} \right)$

Hence eliminating $\theta $, we get

$\frac{{{a^2}}}{{{l^2}}} – \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.