सरल रेखा $lx + my = n$ का अतिपरवलय ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ पर अभिलम्ब होने का प्रतिबन्ध होगा
$\frac{{{a^2}}}{{{l^2}}} - \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$
$\frac{{{l^2}}}{{{a^2}}} - \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} + {b^2})}^2}}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
$\frac{{{l^2}}}{{{a^2}}} + \frac{{{m^2}}}{{{b^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
यदि रेखा $x -1=0$, अतिपरवलय $kx ^2- y ^2=6$ की एक नियता है, तो यह अतिपरवलय किस बिंदु से होकर जाता है ?
एक अतिपरवलय की नाभियाँ $( \pm 2,0)$ हैं तथा इसकी उत्केन्द्रता $\frac{3}{2}$ है। प्रथम चतुर्थांश में अतिपरवलय के एक बिंदु पर एक स्पर्श रेखा, जो $2 x+3 y=6$ के लंबवत है, खींची जाती है। यदि यह स्पर्श रेखा, $x$ - तथा $y$-अक्षों पर क्रमशः अंतःखंड $a$ तथा $b$ बनाती है, तो $|6 \mathrm{a}|+|5 \mathrm{~b}|$ बराबर है_______.
अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ का केन्द्र $C$ है। इस अतिपरवलय के किसी भी बिन्दु $P$ पर खींची गयी स्पर्श रेखा, सरल रेखाओं $bx - ay = 0$ व $bx + ay = 0$ को क्रमश: $Q$ व $R$ बिन्दुओं पर मिलती है, तो $CQ\;.\;CR = $
अतिपरवलय $\frac{x^2}{9}-\frac{y^2}{4}=1$, पर सरल रेखा $2 x-y=1$ के समान्तर स्पर्श रेखाये खींची गयी है। इन स्पर्श रेखाओं के अतिपरवलय पर स्पर्श बिन्दु (points of contacts) निम्न है
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$
$(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$
शांकव ${x^2} - {y^2} - 8x + 2y + 11 = 0$ के बिन्दु $(2, 1)$ पर स्पर्श का समीकरण होगा