Accumulation of lactic acid $(HC_3H_5O_3),$ a monobasic acid in tissues leads to pain and a feeling of fatigue. In a $0.10\, M$ aqueous solution, lactic acid is $3.7\%$ dissociates. The value of dissociation constant, $K_a,$ for this acid will be
$1.4 \times 10^{-5}$
$1.4 \times 10^{-4}$
$3.7 \times 10^{-4}$
$2.8 \times 10^{-4}$
Values of dissociation constant, $K_a$ are given as follows
Acid | $K_a$ |
$HCN$ | $6.2\times 10^{-10}$ |
$HF$ | $7.2\times 10^{-4}$ |
$HNO_2$ | $4.0\times 10^{-4}$ |
Correct order of increasing base strength of the base $CN^-,F^-$ and $NO_2^-$ will be
Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.
The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its $0.05\, M$ solution and also its $pH$. What will be its degree of ionization if the solution is $0.01$ $M$ in $HCl$ also?
$5\%$ ionization is occur in $0.01$ $M$ $C{H_3}COOH$ solution. Calculate its dissociation constant.
Find $pH$ of $5 \times 10^{-3}\, M$ $H_2CO_3$ solution having $10\%$ dissociation