सारणिक $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ निम्न में से किसके बराबर नहीं है
$\left| {\,\begin{array}{*{20}{c}}2&1&1\\2&2&3\\2&3&6\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}2&1&1\\3&2&3\\4&3&6\end{array}\,} \right|$
$\left| {\begin{array}{*{20}{c}}1&2&1\\1&5&3\\1&9&6\end{array}} \right|$
$\left| {\,\begin{array}{*{20}{c}}3&1&1\\6&2&3\\{10}&3&6\end{array}} \right|\,$
यदि $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, तो $x =$
यदि रैखिक समीकरण निकाय $x-4 y+7 z=g$, $3 y-5 z=h$, $-2 x+5 y-9 z=k$ संगत (consistent) है, तो
रैखिक समीकरण निकाय $x+y+z=5, x+2 y+\lambda^2 z=9$ $\mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$, जहाँ $\lambda, \mu \in \mathrm{R}$ हैं, का विचार कीजिए। तो निम्न में से कौन सा कथन सत्य नहीं है?
यदि $A =\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ तो दिखाइए $|2 A |=4 \mid A$
मान लीजिए कि $\alpha, \beta$ तथा $\gamma$ ऐसी वास्तविक संख्याएँ है जिनके लिए रैखिय समीकरणों
$x+2 y+3 z=\alpha$
$4 x+5 y+6 z=\beta$
$7 x+8 y+9 z=\gamma-$
का निकाय (system of linear equations) संगत (consistent) है। मान लीजिए कि $| M |$ आव्यूह (matrix)
$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
का सारणिक (determinant) है।
मान लीजिए कि $P$ उन सभी $(\alpha, \beta, \gamma)$ को अंतर्विष्ट करने वाला समतल है। जिनके लिए ऊपर दिए गए रैखिक समीकरणों का निकाय संगत है, और $D$, बिन्दु $(0,1,0)$ की समतल $P$ से दूरी के वर्ग (square of the distance) का मान है।
($1$) $| M |$ का मान. . . .है।
($2$) $D$ का मान. . . .है।