3 and 4 .Determinants and Matrices
medium

सारणिक $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ निम्न में से किसके बराबर नहीं है

A

$\left| {\,\begin{array}{*{20}{c}}2&1&1\\2&2&3\\2&3&6\end{array}\,} \right|$

B

$\left| {\,\begin{array}{*{20}{c}}2&1&1\\3&2&3\\4&3&6\end{array}\,} \right|$

C

$\left| {\begin{array}{*{20}{c}}1&2&1\\1&5&3\\1&9&6\end{array}} \right|$

D

$\left| {\,\begin{array}{*{20}{c}}3&1&1\\6&2&3\\{10}&3&6\end{array}} \right|\,$

Solution

(a) $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|\, = \,\left| {\,\begin{array}{*{20}{c}}2&1&1\\3&2&3\\4&3&6\end{array}\,} \right|$ by ${C_1} \ to {C_1} + {C_2}$

=  $\left| {\,\begin{array}{*{20}{c}}
1&2&1\\
1&5&3\\
1&9&6
\end{array}\,} \right|\,$      by ${C_2} \to {C_2} + {C_3}$

= $\left| {\,\begin{array}{*{20}{c}}3&1&1\\6&2&3\\{10}&3&6\end{array}\,} \right|$,     by ${C_1} \to {C_1} + {C_2} + {C_3}$.

लेकिन $ \ne \left| {\,\begin{array}{*{20}{c}}2&1&1\\2&2&3\\2&3&6\end{array}\,} \right|$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.