यहाँ आरेख में कुछ समविभव क्षेत्र दर्शाये गये हैं :
प्रत्येक आरेख एक धनात्मक आवेश को $A$ से $B$ तक ले जाते हैं। तो, इस प्रक्रम में, $q$ को $A$ से $B$ तक ले जाने में :
सभी चारों आरेखों में समान कार्य करना पडेगा
आरेख $(a)$ में न्यूनतम कार्य करना पड़ेगा
आरेख $(b)$ में अधिकतम कार्य करना पड़ेगा
आरेख $(c)$ में अधिकतम कार्य करना पड़ेगा
नीचे दो कथन दिये गये है : एक को अभिकथन ($A$) तथा दूसरे को कारण $(\mathrm{R})$ से चिन्हित किया गया है। अभिकथन ($A$) : एक समविभव पृष्ठ पर गतिमान एक धनावेश पर वैद्युत क्षेत्र द्वारा किया गया कार्य सदैव शून्य होता है।
कारण ($R$) : वैद्युत बल रेखाएँ सदैव समविभव पृष्ठ के लम्बवत् होती है।
उपरोक्त कथनों के आलोक में नीचे दिये गए विकल्पों में से सबसे उचित उत्तर का चयन कीजिए।
व्यवस्थात्मकतः निम्नलिखित में संगत समविभव पृष्ठ का वर्णन कीजिएः
$(a)$ $Z-$दिशा में अचर विद्युत क्षेत्र
$(b)$ एक क्षेत्र जो एकसमान रूप से बढ़ता है, परंतु एक ही दिशा ( मान लीजिए $z-$ दिशा) में रहता है।
$(c)$ मूल बिंदु पर कोई एकल धनावेश, और
$(d)$ एक समतल में समान दूरी पर समांतर लंबे आवेशित तारों से बने एकसमान जाल।
जब एकांक धन आवेश को समविभव सतह पर एक बिन्दु से दूसरे बिन्दु तक ले जाते है, तो
निम्न चित्र में समविभव बिन्दु होंगे
समरूप विद्युत क्षेत्र किसी क्षेत्र में धनात्मक $x$-दिशा की ओर इंगित है। माना $A$ मूलबिन्दु है, $B$, $x$-अक्ष पर $x = + 1$ सेमी. पर बिन्दु है तथा $C$ $y$-अक्ष पर $y = + 1$ सेमी. पर एक बिन्दु है तो बिन्दुओं $A$, $B$ व $C$ पर विभव निम्न सम्बंध से सन्तुष्ट होंगे