The four arithmetic means between $3$ and $23$ are
$5, 9, 11, 13$
$7, 11, 15, 19$
$5, 11, 15, 22$
$7, 15, 19, 21$
Suppose the sum of the first $m$ terms of an arithmetic progression is $n$ and the sum of its first $n$ terms is $m$, where $m \neq n$. Then, the sum of the first $(m+n)$ terms of the arithmetic progression is
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
Find the sum to $n$ terms of the $A.P.,$ whose $k^{\text {th }}$ term is $5 k+1$
If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .