The four arithmetic means between $3$ and $23$ are

  • A

    $5, 9, 11, 13$

  • B

    $7, 11, 15, 19$

  • C

    $5, 11, 15, 22$

  • D

    $7, 15, 19, 21$

Similar Questions

If ${S_1},\;{S_2},\;{S_3},...........{S_m}$ are the sums of $n$ terms of $m$ $A.P.'s$ whose first terms are $1,\;2,\;3,\;...............,m$ and common differences are $1,\;3,\;5,\;...........2m - 1$ respectively, then ${S_1} + {S_2} + {S_3} + .......{S_m} = $

The arithmetic mean of first $n$ natural number

Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is

  • [KVPY 2013]

Let ${\left( {1 - 2x + 3{x^2}} \right)^{10x}}  = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, then the arithmetic mean of $a_0,a_1,a_2,...a_n$ is

Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$