एक बहुभुज के दो क्रमिक अंतःकोणों का अंतर $5^{0}$ है। यदि सबसे छोटा कोण $120^{\circ}$ हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The angles of the polygon will form an $A.P.$ with common difference $d$ as $5^{\circ}$ and first term $a$ as $120^{\circ}$

It is known that the sum of all angles of a polygon with $n$ sides is $180(n-2)$

$\therefore S_{n}=180^{\circ}(n-2)$

$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=180^{\circ}(n-2)$

$\Rightarrow \frac{n}{2}\left[240^{\circ}+(n-1) 5^{\circ}\right]=180^{\circ}(n-2)$

$\Rightarrow n[240+(n-1) 5]=360(n-2)$

$\Rightarrow 240 n+5 n^{2}-5 n=360 n-720$

$\Rightarrow 5 n^{2}-125 n+720=0$

$\Rightarrow n^{2}-25 n+144=0$

$\Rightarrow n^{2}-16 n-9 n+144=0$

$\Rightarrow n(n-16)-9(n-16)=0$

$\Rightarrow(n-9)(n-16)=0$

$\Rightarrow n=9$ or $16$

Similar Questions

यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो  $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा

मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?

  • [KVPY 2019]

एक समांतर श्रेणी में $15$ पद हैं। इसका पहला पद $5$ है तथा योग $390$ है। मध्य पद है

यदि $\alpha ,\;\beta ,\;\gamma $ क्रमश: $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ के गुणोत्तर माध्य हों जहाँ $a,\;b,\;c$ समान्तर श्रेणी में हैं, तो ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ होंगे

यदि $a$ तथा $b$ के मध्य $n$ समान्तर माध्य इस प्रकार प्रविष्ट किये जाते है कि प्रथम माध्य तथा अंतिम माध्य का अनुपात $1: 7$ तथा $a+n=33$ है, $n$ का मान है

  • [JEE MAIN 2022]