- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
પરમિટિવિટી ${\varepsilon _0}$ નું પરિમાણ શું થાય?
A${A^2}{T^2}{M^{ - 1}}{L^{ - 3}}$
B${A^2}{T^4}{M^{ - 1}}{L^{ - 3}}$
C${A^{ - 2}}{T^{ - 4}}M{L^3}$
D${A^2}{T^{ - 4}}{M^{ - 1}}{L^{ - 3}}$
(AIIMS-2004)
Solution
(b) $F = \frac{1}{{4\pi {\varepsilon _0}}}\,\frac{{{q_1}{q_2}}}{{{r^2}}}$
$ \Rightarrow {\varepsilon _0} = \frac{{|{q_1}|\,|{q_2}|}}{{[F]\,[{r^2}]}} $ $= \frac{{[{A^2}{T^2}]}}{{[ML{T^{ – 2}}]\,[{L^2}]}} $ $= [{A^2}{T^4}{M^{ – 1}}{L^{ – 3}}]$
$ \Rightarrow {\varepsilon _0} = \frac{{|{q_1}|\,|{q_2}|}}{{[F]\,[{r^2}]}} $ $= \frac{{[{A^2}{T^2}]}}{{[ML{T^{ – 2}}]\,[{L^2}]}} $ $= [{A^2}{T^4}{M^{ – 1}}{L^{ – 3}}]$
Standard 11
Physics
Similar Questions
સૂચિ $I$ અને સૂયિ $II$ મેળવો
List $I$ | List $II$ |
$A$ ટોર્ક | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ ચુંબકીય ક્ષેત્ર | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ ચુંબકીય ચાક્માત્રા | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ મુક્ત અવકાશની પારગામયતા | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |