The dimensions of Stefan-Boltzmann's constant $\sigma$ can be written in terms of Planck's constant $h$, Boltzmann's constant $k_B$ and the speed of light $c$ as $\sigma=h^\alpha k_B^\beta c^\gamma$. Here,

  • [KVPY 2014]
  • A

    $\alpha=3, \beta=4$ and $\gamma=-3$

  • B

    $\alpha=3, \beta=-4$ and $\gamma=2$

  • C

    $\alpha=-3, \beta=4$ and $\gamma=-2$

  • D

    $\alpha=2, \beta=-3$ and $\gamma=-1$

Similar Questions

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

The equation of a wave is given by$Y = A\sin \omega \left( {\frac{x}{v} - k} \right)$where $\omega $ is the angular velocity and $v$ is the linear velocity. The dimension of $k$ is

A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,

  • [KVPY 2017]

If $R , X _{ L }$. and $X _{ C }$ represent resistance, inductive reactance and capacitive reactance. Then which of the following is dimensionless:

  • [JEE MAIN 2023]

In electromagnetic theory, the electric and magnetic phenomena are related to each other. Therefore, the dimensions of electric and magnetic quantities must also be related to each other. In the questions below, $[E]$ and $[B]$ stand for dimensions of electric and magnetic fields respectively, while $\left[\varepsilon_0\right]$ and $\left[\mu_0\right]$ stand for dimensions of the permittivity and permeability of free space respectively. $[L]$ and $[T]$ are dimensions of length and time respectively. All the quantities are given in $SI$ units.

($1$) The relation between $[E]$ and $[B]$ is

$(A)$ $[ E ]=[ B ][ L ][ T ]$  $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$  $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$  $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$

($2$) The relation between $\left[\varepsilon_0\right]$ and $\left[\mu_0\right]$ is

$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$  $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$   $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$  $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2018]