स्टीफेन-बोल्ट्ज़मैन नियतांक $\sigma$ की विमा को प्लांक स्थिरांक $h$, बोल्ट्ऱ्मैन नियतांक $k_B$ एवं प्रकाश की चाल ' $c$ ' के माध्यम से $\sigma=h^\alpha k_B{ }^\beta c^\gamma$ के रूप में व्यक्त किया जा सकता है। यहाँ

  • [KVPY 2014]
  • A

    $\alpha=3, \beta=4$ तथा $\gamma=-3$

  • B

    $\alpha=3, \beta=-4$ तथा $\gamma=2$

  • C

    $\alpha=-3, \beta=4$ तथा $\gamma=-2$

  • D

    $\alpha=2, \beta=-3$ तथा $\gamma=-1$

Similar Questions

यदि प्रकाश का वेग $(c)$, गुरुत्वाकर्षण नियतांक $(G)$ तथा प्लांक नियतांक $(h)$ को मूल मात्रक माना जाए तब नई पद्धति में द्रव्यमान की विमा होगी

  • [JEE MAIN 2023]

यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी

  • [AIPMT 2014]

$C{V^2}$ की विमायें निम्न विमा से मिलती है

कुछ गैसों की अवस्था की समीकरण $\left(P+\frac{a}{V^2}\right)$ $(V-b)=R T$ से प्रदर्शित होती है, जहाँ $P$ दाब, $\mathrm{V}$ आयतन, $\mathrm{T}$ ताप तथा $a, b, R$ नियतांक हैं। $\frac{b^2}{a}$ के समतुल्य विमीय सूत्र वाली भौतिक राशि होगी:

  • [JEE MAIN 2023]

कोणीय संवेग का विमीय सूत्र है

  • [IIT 1983]