एक ब्लैक होल (black hole) के क्षेत्रफल $A$ को सार्वत्रिक गुरुत्वाकर्षण स्थिरांक $G$, उसके द्रव्यमान $M$ तथा प्रकाश के वेग $c$ के माध्यम से $A=G^\alpha M^\beta c^\gamma$ के रूप में निरूपित किया जा सकता है। यहाँ

  • [KVPY 2015]
  • A

    $\alpha=-2, \beta=-2$ और $\gamma=4$

  • B

    $\alpha=2, \beta=2$ और $\gamma=-4$

  • C

    $\alpha=3, \beta=3$ और $\gamma=-2$

  • D

    $\alpha=-3, \beta=-3$ और $\gamma=2$

Similar Questions

दिये गये सम्बन्ध $y = a\cos (\omega t - kx)$ में $k$ का विमीय सूत्र है

स्तम्भ

स्तम्भ II

 $(i)$ क्यूरी

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ प्रकाश वर्ष 

 $(B)$ $M$

 $(iii)$ परावैद्युत सामथ्र्य

 $(C)$ विमाहीन

 $(iv)$ परमाणु भार

 $(D)$ $T$

 $(v)$ डेसीबल

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

सही मेल का चुनाव कीजिए

  • [IIT 1992]

कोई वस्तु द्रव में गतिशील है। इस पर क्रियाशील श्यान बल, वेग के समानुपाती है, तो समानुपातिक नियतांक की विमा होगी

यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:

$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$

जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:

  • [KVPY 2015]

यदि किसी द्रव की बूँद के कम्पन का आवर्तकाल $(T)$, बूंद के पृष्ठ-तनाव $(S)$, त्रिज्या $(r)$ एवं घनत्व $(\rho )$ पर निर्भर करता हो तो आवर्तकाल $(T)$ का व्यंजक है