એક બિંદુ પરના સ્થાન સદીશ $2 \hat{i}+4 \hat{j}$ થી બીજુ બિંદુ પરના સ્થાન સદીશ $5 \hat{i}+1 \hat{j}$ સુધીનું કણનું સ્થાનાંતર ............ એકમ હશે.
$3$
$3 \sqrt{2}$
$5$
$5 \sqrt{3}$
આકૃતિમાં દર્શાવ્યા મુજબ એક વ્યક્તિ ચોરસના $A$ બિંદુથી સામેના છેડે આવેલા $C$ બિંદુ પર જવા માંગે છે. ચોરસની બાજુની લંબાઈ $100\, m$ છે. મધ્યમાં આવેલ $50\, m\,\times \,50\, m$ ચોરસમાં રેતી પથરાયેલ છે. આ રેતીવાળા ચોરસની બહાર તે $1\,ms^{-1}$ ની ઝડપથી ચાલી શકે છે જ્યારે રેતીવાળા ચોરસમાં $vms^{-1}$ ની ઝડપથી ચાલી શકે છે જ્યાં $(v < 1)$ તો રેતીમાંથી ચાલીને કે રેતીની બહારથી ચાલીને $C$ બિંદુ પર ઝડપથી પહોંચવા નું ન્યૂનતમ મૂલ્ય કેટલું હોવું જોઈએ ?
સમયના વિધેયના સ્વરૂપમાં કોઇ કણના સ્થાન સદિશ $\overrightarrow {R} = 4\sin \left( {2\pi t} \right)\hat i + 4\cos \left( {2\pi t} \right)\hat j$ વડે આપવામાં આવે છે, જયાં $R$ મીટરમાં, $t$ સેકન્ડમાં અને $\hat i$ અને $\hat j$ એ અનુક્રમે $x-$ અક્ષ અને $y-$ અક્ષની દિશામાંના એકમ સદિશો છે. કણની ગતિ માટે નીચેનામાંથી કયું વિધાન ખોટું છે?
એક કણ ઉગમબિંદુથી $x-y$ સમતલમાં પોતાની ગતિ શરૂ કરે છે. $\mathrm{t}=0$ સમયે તેનો શરૂઆતનો વેગ $3.0 \hat{\mathrm{i}} \;\mathrm{m} / \mathrm{s}$ અને અચળ પ્રવેગ $(6.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}) \;\mathrm{m} / \mathrm{s}^{2}$ છે. જ્યારે કણનો $y-$યામ $32\;\mathrm{m}$ હોય ત્યારે તેનો $x-$યામ $D$ મીટર છે તો $D$ નું મૂલ્ય કેટલું હશે?
$\hat i$ તથા $\hat j$ અનુક્રમે $X$ અને $Y$ -અક્ષ પરના એકમ સદિશ છે. સદિશો $\hat{ i }+\hat{ j }$ તથા $\hat{ i }-\hat{ j }$ નાં મૂલ્યો અને દિશા કઈ હશે ? સદિશ $A =2 \hat{ i }+3 \hat{ j }$ ના $\hat{ i }+\hat{ j }$ તથા $\hat{ i }-\hat{ j } $ ની દિશાઓમાં ઘટક શોધો. (તમે આલેખીય રીતનો ઉપયોગ કરી શકો છો.)