- Home
- Standard 11
- Physics
The distance $x$ covered by a particle in one dimensional motion varies with time $t$ as $\mathrm{x}^{2}=\mathrm{at}^{2}+2 \mathrm{bt}+\mathrm{c.}$ If the acceleration of the particle depends on $\mathrm{x}$ as $\mathrm{x}^{-\mathrm{n}},$ where $\mathrm{n}$ is an integer, the value of $\mathrm{n}$ is
$9$
$6$
$4$
$3$
Solution
$\mathrm{x}=\sqrt{\mathrm{at}^{2}+2 \mathrm{bt}+\mathrm{c}}$
Differentiating w.r.t. time
$\frac{d x}{d t}=v=\frac{1}{2 \sqrt{a t^{2}+2 b t+c}} \times(2 a t+2 b)$
$\Rightarrow \mathrm{v}=\frac{\mathrm{at}+\mathrm{b}}{\mathrm{x}}$
$\Rightarrow \mathrm{vx}=\mathrm{at}+\mathrm{b}$
Differentiating w.r.t. $\mathrm{x}$
$\Rightarrow \frac{d v}{d x} \times x+v=a \times \frac{d t}{d x}$
Multiply both side by v
$\Rightarrow\left(v \frac{d v}{d x}\right) x+v^{2}=a$
$\Rightarrow \mathrm{a}^{\prime} \mathrm{x}=\mathrm{a}-\mathrm{v}^{2}$ [Here $a'$ is acceleration]
$\Rightarrow \mathrm{a}^{\prime} \mathrm{x}=\mathrm{a}-\left(\frac{\mathrm{at}+\mathrm{b}}{\mathrm{x}}\right)^{2}$
$\Rightarrow \mathrm{a}^{\prime} \mathrm{x}=\frac{\mathrm{ax}^{2}-(\mathrm{at}+\mathrm{b})^{2}}{\mathrm{x}^{2}}$
$\Rightarrow \mathrm{a}^{\prime} \mathrm{x}=\frac{\mathrm{a}\left(\mathrm{at}^{2}+2 \mathrm{bt}+\mathrm{c}\right)-(\mathrm{at}+\mathrm{b})^{2}}{\mathrm{x}^{2}}$
$\Rightarrow \mathrm{a}^{\prime} \mathrm{x}=\frac{\mathrm{ac}-\mathrm{b}^{2}}{\mathrm{x}^{2}}$
$\Rightarrow \mathrm{a}^{\prime}=\frac{\mathrm{ac}-\mathrm{b}^{2}}{\mathrm{x}^{3}}$
$\therefore a^{\prime} \propto \frac{1}{x^{3}} \quad \therefore n=3$
Similar Questions
Match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ $\frac{dv}{dt}$ | $(p)$ Acceleration |
$(B)$ $\frac{d|v|}{dt}$ | $(q)$ Magnitude of acceleration |
$(C)$ $\frac{dr}{dt}$ | $(r)$ Velocity |
$(D)$ $\left|\frac{d r }{d t}\right|$ | $(s)$ Magnitude of velocity |