- Home
- Standard 11
- Physics
3-2.Motion in Plane
medium
The distance of a particle moving on a circle of radius $12 \,m$ measured from a fixed point on the circle and measured along the circle is given by $s=2 t^3$ (in meters). The ratio of its tangential to centripetal acceleration at $t=2 \,s$ is .........
A
$1: 1$
B
$1: 2$
C
$2: 1$
D
$3: 1$
Solution
(b)
$S =2 t ^3$ given
$\frac{d s}{d t}=6 t^2 \Rightarrow v=6 t^2$
At $t =2 s \quad v =24 m / s$
Centripetal acc. $=\frac{ v ^2}{ R }=\frac{24 \times 24}{12}=48$
$\frac{ d ^2 s }{ dt ^2}= a _{ t }=$ Tangential acc. $=12 t$
$\operatorname{At} t=2 \sec \quad a_t=24$
$\therefore \frac{a_t}{a_c}=\frac{24}{48}=1: 2$
Standard 11
Physics