The Earth is assumed to be a sphere of radius $R$. A platform is arranged at a height $R$ from the surface of the Earth. The escape velocity of a body from this platform is $fv$, where $v$ is its escape velocity from the surface of the Earth. the value of $f$ is

  • A

    $\sqrt 2 $

  • B

    $\frac{1}{{\sqrt 2 }}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{1}{2}$

Similar Questions

A spherical planet far out in space has a mass ${M_0}$ and diameter ${D_0}$. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity which is equal to

The angular speed of earth in $rad/s$, so that bodies on equator may appear weightless is : [Use $g = 10\, m/s^2$ and the radius of earth $= 6.4 \times 10^3\, km$]

The radii of two planets are respectively $R_1$ and $R_2$ and their densities are respectively ${\rho _1}$ and ${\rho _2}$. The ratio of the accelerations due to gravity at their surfaces is

Two spherical bodies of mass $M$ and $5M$ and radii $R$ and $2R$ respectively are released in free space with initial separation between their centres equal to $12\,R$. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is

A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)