दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है
$4\over5$
$3\over5$
$5\over4$
अधिकल्पित
यदि रेखा, $x -2 y =12$ दीर्घवृत्त, $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ को बिन्दु $\left(3, \frac{-9}{2}\right)$ पर स्पर्श करती है, तो इसके नाभिलम्ब की लम्बाई है
उस दीर्घवृत्त का समीकरण जिसका केन्द्र मूलबिन्दु है तथा जो बिन्दुओं $(-3, 1)$ तथा $(2, -2)$ से गुजरता है, है
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 2,\;0)$ तथा उत्केन्द्रता $\frac{1}{2}$है, होगा
माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :