अतिपरवलय $5{x^2} - 4{y^2} + 20x + 8y = 4$ की उत्केन्द्रता है
$\sqrt 2 $
$\frac{3}{2}$
$2$
$3$
यदि अतिपरवलय की नाभियाँ $(5, 0)$ तथा $(-5, 0)$ और संयुग्मी अक्ष $8$ हो, तो अतिपरवलय का समीकरण होगा
माना अतिपरवलय $\mathrm{H}$ की नाभियाँ $\mathrm{A}(1 \pm \sqrt{2}, 0)$ तथा उत्केन्द्रता $\sqrt{2}$ है। तो $\mathrm{H}$ की नाभिलंब जीवा की लंबाई है :
अतिपरवलय $2{x^2} - 3{y^2} = 5$ की नाभि है
यदि बिंदु $(4,6)$ से होकर जाने वाले मानक अतिपरवलय की उत्केंद्रता $2$ है, तो $(4,6)$ पर अतिपरवलय पर खींची गई स्पर्श रेखा का समीकरण है
अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा