अतिपरवलय का मानक समीकरण ($x$ - अक्ष के अनुदिश अनुप्रस्थ अक्ष) जिसकी नाभिलम्ब की लम्बाई $9$ इकाई व उत्केन्द्रता $\frac{5}{4}$ है, है
$\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{18}} = 1$
$\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{27}} = 1$
$\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1$
$\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1$
$m$ का वह मान जिसके लिए रेखा $y = mx + 6$ अतिपरवलय $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$ की स्पर्श रेखा होगी, है
अतिपरवलय $2{x^2} - 3{y^2} = 6$ की स्पर्श रेखा जो रेखा $y = 3x + 4$ के समान्तर है, होगी
शांकवों $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ तथा $\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1$ की उभयनिष्ठ स्पर्श रेखा का समीकरण है
अतिपरवलय $4{x^2} - 9{y^2} = 16$ की उत्केन्द्रता है
अतिपरवलय $\frac{{\sqrt {1999} }}{3}({x^2} - {y^2}) = 1$ की उत्केन्द्रता है