- Home
- Standard 12
- Physics
एक पराविधुत (dielectric) माध्यम में चलने वाली विधुतचुम्बकीय तरंग से सम्बंधित विधुत क्षेत्र $\overrightarrow{ E }=30(2 \hat{x}+\hat{y}) \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] Vm ^{-1}$ है।
निम्न में से कौन सा(से) कथन सही है(हैं)?
[दिया है: निर्वात में प्रकाश की चाल $c=3 \times 10^8 m s ^{-1}$ ]
$(A)$ $B_x=-2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] Wb m ^{-2}$
$(B)$ $B_y=2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] Wb m ^{-2}$
$(C)$ तरंग $x y$-तल में $x$-अक्ष से $30^{\circ}$ का ध्रुव्रण कोण बनाते हुए ध्रुवित (polarized) है।
$(D)$ इस माध्यम का अपवर्तनांक $2$ है।
$A,C,D$
$A,B$
$A,C$
$A,D$
Solution

(image)
$\mathrm{C}_{\text {medium }}=\frac{5 \times 10^{14}}{10^7 / 3}=1.5 \times 10^8 \mathrm{~m} / \mathrm{s} \therefore \mu=2$
$\mathrm{C}_{\text {medium }}=\frac{\mathrm{E}}{\mathrm{B}} \Rightarrow \mathrm{B}=\frac{\mathrm{E}}{\mathrm{C}_{\mathrm{m}}}=\frac{30 \sqrt{5}}{1.5 \times 10^8}=2 \sqrt{5} \times 10^{-7}$
$\overrightarrow{\mathrm{B}}_{\text {dinection }} \equiv \hat{\mathrm{k}} \times(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}) \equiv \frac{2 \hat{\mathrm{j}}-\hat{\mathrm{i}}}{\sqrt{5}}$
$\therefore \overrightarrow{\mathrm{B}}=2 \times 10^{-7}(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \sin \left[27\left(5 \times 10^{17} \mathrm{t}-\frac{10^7}{3} \mathrm{z}\right)\right]$
(image)