एक $I$ तीव्रता वाली विद्युत चुम्बकीय तरंग द्वारा परावर्तन न करने वाली सतह पर आरोपित दाब होगा [$c =$ प्रकाश का वेग]
$Ic$
$I{c^2}$
$I/c$
$I/{c^2}$
सूर्य का प्रकाश, $36\,cm ^2$ क्षेत्रफल वाले किसी तल पर लम्बवत् गिर रहा है, जो कि $20$ मिनट के समय अन्तराल में इस पर $7.2 \times 10^{-9}\,N$ का औसत बल आरोपित करता है। यदि पूर्ण अवशोषण की स्थिति माना जाए, तो आपतित प्रकाश के ऊर्जा फ्लक्स का मान होगा
सूर्य की सतह पर विकिरण की माध्य तीव्रता लगभग $10^{8} \,W / m ^{2}$ होती है। संगत चुम्बकीय क्षेत्र का वर्ग माध्यमूल मान लगभग होगा?
विद्युत-चुम्बकीय दोलनों में संचित ऊर्जा किस रूप में होती है
एक समतल वैद्युत चुम्बकीय तरंग में समाहित दोलनीकृत चुम्बकीय क्षेत्र $B _{ y }=5 \times 10^{-6} \sin 1000 \pi\left(5 x -4 \times 10^8 t \right) T$ द्वारा निरूपित है। विद्युत क्षेत्र का आयाम होगा।
किसी विद्युत चुम्बकीय तरंग में विधुत क्षेत्र निम्नवत है
$\overrightarrow{\mathrm{E}}=20 \sin \omega\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{c}}\right) \overrightarrow{\mathrm{j} N C^{-1}}$
जहाँ $\omega$ एवं $\mathrm{c}$ क्रमशः कोणीय आवृत्ति एवं विद्युत चुम्बकीय तरंग का वेग हैं। $5 \times 10^{-4} \mathrm{~m}^3$ के आयतन में अंतर्विष्ट (Contained) ऊर्जा होगी:
(दिया है $\varepsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2$ )