यदि दीर्घवत्त $\frac{ x ^{2}}{ b ^{2}}+\frac{ y ^{2}}{4 a ^{2}}=1$ की एक स्पर्श रेखा तथा निर्देशांक अक्षों द्वारा बने त्रिभुज का न्यूनतम क्षेत्रफल $kab$ है, तो $k$ बराबर है ........ |
$1$
$3$
$2$
$7$
मान लें $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$ एक दीर्घवृत्त है जिसका दीर्घ अक्ष $A B$ एवं लघु अक्ष $C D$ है. मान लें कि $F_1$ एवं $F_2$ इसकी दो नाभियाँ हैं. खंड $A B$ में $A, F_1, F_2, B$ क्रम में हैं. मान लें $\angle F_1 C B=90^{\circ}$, दीर्घवृत्त की उत्केन्द्रता है.
माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$
यदि दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की नाभियाँ व अतिपरवलय $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ की नाभियाँ सम्पाती हों तो ${b^2}$ का मान है
यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$ हो, तो उसका नाभिलम्ब होगा
यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है