एक निकाय की समय $t$ पर ऊर्जा $E(t)=A^2 \exp (-\alpha t )$ फलन द्वारा दी जाती है, जहाँ $\alpha=0.2 s ^{-1}$ हैं। $A$ के मापन में $1.25 \%$ की प्रतिशत त्रुटि है। यदि समय के मापन में $1.50 \%$ की त्रुटि है तब $t =5 s$ पर $E ( t )$ के मान में प्रतिशत त्रुटि होगी।

  • [IIT 2015]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

तीन विद्यार्थी $S_{1}, S_{2}$ तथा $S_{3}$ गुरूत्वीय त्वरण $( g )$ के मापन के लिये सरल लोलक की सहायता से एक प्रयोग करते है। वे अलग-अलग लम्बाई के लोलको का उपयोग करते है तथा दोलनों की भिन्न-भिन्न संख्या के लिये समय दर्ज करते है। ये प्रेक्षण निम्न तालिका में दिये गये है

Student No. Length of pendulum $(cm)$ No. of oscillations $(n)$ Total time for oscillations Time period $(s)$
$1.$ $64.0$ $8$ $128.0$ $16.0$
$2.$ $64.0$ $4$ $64.0$ $16.0$
$3.$ $20.0$ $4$ $36.0$ $9.0$

(लम्बाई का अल्पतमांक $=0.1 \,m$ समय का अल्पतमांक $=0.1\, s$ )

यदि $E _{1}, E _{2}$ तथा $E _{3}$ क्रमशः विद्यार्थी $1,2$ व $3$ के लिये ' $g$ ' में प्रतिशत त्रुटि हो तो किस विद्यार्थी द्वारा न्यूनतम प्रतिशत त्रुटि प्राप्त की गयी?

  • [JEE MAIN 2021]

किसी तार का प्रतिरोध उसमें प्रवाहित धारा तथा छोड़ों के बीच विभवान्तर का मापन कर प्राप्त किया जा सकता है। यदि धारा तथा विभवान्तर के मापन में प्रत्येक $3\, \%$ की त्रुटि प्राप्त होती है, तो तार के प्रतिरोघ के मान में प्रतिशत त्रुटि ($\%$ में) ज्ञात कीजिये।

  • [AIEEE 2012]

एक पिण्ड का द्रव्यमान $22.42$ ग्राम तथा आयतन $4.7$ घन सेमी है। इसके मापन में $0.01$ ग्राम तथा $0.1$ घन सेमी की त्रुटि है, तो घनत्व में अधिकतम त्रुटि होगी

  • [AIPMT 1991]

एक गोले की त्रिज्या $(7.50 \pm 0.85) \,cm$ मापी गई है। माना कि इसके आयतन में प्रतिशत त्रुटि $x$ है। यहाँ $x$ का मान निकटतम पूर्णांक में $......$ होगा।

  • [JEE MAIN 2021]

घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $4 \%$ तथा $3 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ......... $\%$ होगी

  • [AIIMS 2013]