The equation $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ has
no solution
one real solution
more than one real solution
none of these
The solution of the equation $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$, is
The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
If $\cos A\sin \left( {A - \frac{\pi }{6}} \right)$ is maximum, then the value of $A$ is equal to
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are