समीकरण $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}:$
के दो हल हैं तथा दोनों ऋणात्मक है
का कोई हल नहीं है
के चार हल हैं जिनमें से दो ऋणात्मक है
के दो हल हैं तथा उनमें से केवल एक ॠणात्मक है
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा
यदि $x$ वास्तविक हेा तो समीकरण ${x^2} - 6x + 10$ का न्यूनतम मान होगा
माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........
मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है