समीकरण $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ के वास्तविक हलों की संख्या है $............$
$6$
$9$
$20$
$2$
यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
सभी वास्तविक संख्याओं $x$ का वह समुच्चय जिसके लिये ${x^2} - |x + 2| + x > 0,$ होगा
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।
समीकरण $|{x^2}| + |x| - 6 = 0$के मूल होंगे
${t^2}{x^2} + |x| + \,9 = 0$के वास्तविक मूलों का गुणनफल होगा