समीकरण ${x^2} - |x| - \,6 = 0$ के सभी वास्तविक मूलों का गुणनफल होगा
$-9$
$6$
$9$
$36$
समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे
समीकरण ${e^x} - x - 1 = 0$ के होंगे
वक्रों $\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$ है, तो $\mathrm{S}$ में अवयवों की संख्या है :
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
समीकरणों $6 x+4 y+z=200$ एवं $x+y+z=100$ के अरुणात्मक $(non-negative)$ पूर्णांक हलों की संख्या क्या होगी ?