The quantities $A$ and $B$ are related by the relation, $m = A/B$, where $m$ is the linear density and $A$ is the force. The dimensions of $B$ are of

  • A

    Pressure

  • B

    Work

  • C

    Latent heat

  • D

    None of the above

Similar Questions

The value of gravitational acceleration $C.G.S.$ system is $980 \;cm / sec$ ? .find the value of $g$ in $M.K.S$ system?

If pressure $P$, velocity $V$ and time $T$ are taken as fundamental physical quantities, the dimensional formula of force is

Consider following statements

$(A)$ Any physical quantity have more than one unit

$(B)$ Any physical quantity have only one dimensional formula

$(C)$ More than one physical quantities may have same dimension

$(D)$ We can add and subtract only those expression having same dimension

Number of correct statement is

A length-scale $(l)$ depends on the permittivity $(\varepsilon)$ of a dielectric material. Boltzmann constant $\left(k_B\right)$, the absolute temperature $(T)$, the number per unit volune $(n)$ of certain charged particles, and the charge $(q)$ carried by each of the particless. Which of the following expression($s$) for $l$ is(are) dimensionally correct?

($A$) $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$

($B$) $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$

($C$)$l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$

($D$) $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$

  • [IIT 2016]

Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is

  • [JEE MAIN 2024]