The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is

  • A

    $\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y - 1)}^2}}}{8} = 1$

  • B

    $\frac{{{{(x - 2)}^2}}}{8} + \frac{{{{(y - 1)}^2}}}{9} = 1$

  • C

    $\frac{{{{(x + 2)}^2}}}{8} + \frac{{{{(y + 1)}^2}}}{9} = 1$

  • D

    $\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{8} = 1$

Similar Questions

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.

Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}\,>\,\mathrm{b} .$ Let $\mathrm{E}_{2}$ be another ellipse such that it touches the end points of major axis of $E_{1}$ and the foci $E_{2}$ are the end points of minor axis of $E_{1}$. If $E_{1}$ and $E_{2}$ have same eccentricities, then its value is :

  • [JEE MAIN 2021]

The eccentricity of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, is

Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .

  • [JEE MAIN 2021]

If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $